4 U, i
Lo N :\: N\ .
\\\‘{’A NN SN \,\
\k IQ \e\ \\\'\\ \ -
\ \§\ S O - X .
\‘\‘\\ 3,\ - '
\ <

- INTRODUCTION TO OPENMP
BRENT LEBACK, MEMBER OF THE NVIDIA HPC SDK TEAM

OPENMP RESOURCES

Z % B » Q :

&< — C @& openmp.org

¥ f in N\ & ee

O pe I lM I . The OpenMP API specification for parallel programming

Resources v News & Events v About v

Specifications Community v

OpenMP 5.2 Released with Improvements and

Refinements

Syntax is refined and several API features are improved

READ MORE

f In N ©&

Latest News

OpenP OpenMP ARB
@OpenMP_ARB
Do you want to get up to h
speed on #OpenMP -
ppppppp - Terms

programming? The following

Slide 2 = nvibia

OPENMP HAS BEEN AROUND A LONG TIME, BUT...

Back to our Day 1 discussion on differences between CPU and GPU

OpenMP

Fork-join model
#pragma omp parallel for

Will your legacy OpenMP code perform for (int 1 = 8; 1 < Nj ++1) {

well on the GPU? compute();

NO

Slide 3 NVIDIA

BASIC SYNTACTIC CONCEPTS

Directive-Based API Designed for Parallel Programming

C/C++ OpenMP pragma syntax
fpragma omp directive [clause]... eol
~ Pragma (“"omp directive .. ")

continue to next line with backslash

Fortran OpenMP directive syntax
lSomp directive [clause]...
& continuation

Fortran-77 syntax rules

! Somp Or CSomp oOr *Somp in columns 1-5
continuation with nonblank in column 6

Target, Teams, and Distribute Constructs are the
major additions for GPU acceleration

Target starts the offload, maps variables to the
device, and executes the construct on the device

Teams creates the teams for execution

Distribute says to workshare amongst the teams
Parallel creates the (CUDA) threads within the team
do/for says to workshare amongst the threads

Compute-Intensive Functions

.

o~

b of Cod

-~
-
-

Application Code

— .
‘ I
R
R
e ——

Rest of Sequential
CPU Code

Slide 4

NVIDIA.

OPENMP TARGET+ CONSTRUCTS

The first attempt might be to just add “target teams distribute” where you already
have OpenMP directives:

#pragma omp target teams distribute parallel for reduction(max:error)
for(int j = 1; j < SZ-1; j++) {
for(int 1 = 1; i < SZ-1; i++)

1
Anew[j][i] = ©.25F * (A[j][i+1] + A[]][i-1]
+ A[J-1][1] + A[J+1][1]);
error = fmaxf(error, fabsf(Anew[j][i]-A[j][i]));
}

66, #omp target teams distribute parallel for
66, Generating "nvkernel main F1L66 3" GPU kernel
Loop parallelized across teams and threads(128), schedule(static)
Generating reduction(max:error)

NVIDIA.

OPENMP TARGET+ CONSTRUCTS

To obtain more parallelism (and get coalesced accesses) you can break up the
directive, and use “parallel for” on the inner loop:

#pragma omp target teams distribute reduction(max:error)
for(int j = 1; j < SZ-1; j++) {
#pragma omp parallel for reduction(max:error)
for(int 1 = 1; i1 < SZ-1; i++) {
Anew[j][i] = ©.25F * (A[j][i+1] + A[]j][i-1]

+ A[J-1][1] + A[J+1][1]);
error = fmaxf(error, fabsf(Anew[j][i]-A[j][i]));

}

66, #omp target teams distribute
66, Generating "nvkernel main F1L66 3" GPU kernel
Generating reduction(max:error)
Loop parallelized across teams, schedule(static)
69, Team private (j) located in CUDA shared memory
omp parallel
69, Generating reduction(max:.errorl714p)
Loop parallelized across threads, schedule(static)

NVIDIA.

#pragma omp target teams distribute reduction(max:error)

OPENMP TARGET+ CONSTRUCTS

Unfortunately, this is not what you want to do on the CPU. On the CPU, we generate
1 team by default; no parallelization across the outer loop.

for(int j = 1; j < SZ-1; j++) {

#pragma omp parallel for reduction(max:error)

66,

for(int 1 = 1; i1 < SZ-1; i++)

1

Anew[j][1] = 0.25F * (A[j][i+1] + A[Jj][i-1]

+ A[J-1][1] + A[3+1][1]);
error = fmaxf(error, fabsf(Anew[j][i]-A[7F][i]));

}

omp target teams distribute
66, Generating reduction(max:error)
Loop parallelized across teams, schedule(static)

NVIDIA.

68,

68,

OPENMP SOLVING THE PORTABILITY ISSUE

One method in OpenMP is to use a meta-directive. We recommend you use the
target_device option. This is not available until our 22.2 release.

for(int j = 1; j < SZ-1; j++) {

for(int 1 = 1; i < SZ-1; i++) {
Anew[j][i] = ©0.25F * (A[j][i+1] + A[]j][i-1]

+ A[J-1][1] + A[J+1][1]);
error = fmaxf(error, fabsf(Anew[j][i]-A[j][i]));

}

omp target teams distribute
68, Generating reduction(max:error)

Loop parallelized across teams, schedule(static)

omp parallel
68, Generating reduction(max:error)

NVIDIA.

OPENMP LOOP DIRECTIVE

We provide a more descriptive OpenMP loop construct. It has some restrictions on what

can be within a “loop”, but states the iterations may execute concurrently, more like
OpenACC.

#pragma omp target teams loop R
for (int 1=0; i<N; i++) {
\ y[1] = a*x[1] + y[1];

<alternatively>

1 parallel
kernel

#tpragma omp target teams A

{
#pragma omp loop
for (int i=0; i<N; i++) { >
\ y[1i] = a*x[1i] + y[1];

} //end target teams in Fortran

<A NVIDIA.

OPENMP TARGET TEAMS LOOP CONSTRUCT

No need for metadirectives or ifdef macros. Provides target-specific parallelism in
the same executable.

#pragma omp target teams loop reduction(max:error)
for(int j = 1; j < SZ-1; j++) {
#pragma omp loop reduction(max:error)
for(int 1 = 1; 1 < SZ-1; i++) {
Anew[]j][1] = 0.25F * (A[j][i+1] + A[j][i-1]
+ A[J-1][1] + A[J+1][1]);
error = fmaxf(error, fabsf(Anew[j][i]-A[j][i]));

}

66, Generating NVIDIA GPU code
66, Loop parallelized across teams /* blockIdx.x */

69, Loop parallelized across threads(128) /* threadIdx.x */
66, Generating reduction(max:error)

66, Generating Multicore code
66, Loop parallelized across threads

NVIDIA.

BIND (TEAMS | PARALLEL | THREAD) CLAUSES ON OMP LOOP

The developer can instruct the compiler
which levels of parallelism to use on given
loops by adding clauses:

teams — Mark this loop for work-shared [#pragma omp loop bind(teams)
execution by all the teams for(i = @; i < size; i++)

parallel — Mark this loop for execution by | #Pragma omp loop bind(parallel)

. for(j = 0; j < size; j++)
all the threads In a team #pragma omp loop bind(thread)

thread — Mark this loop for execution by for(k = @; k < size; k++)
a single thread c[1][J] += a[i][k] * b[k][J];

There 1s only an implicit barrier between
bind(parallel) loops

NVIDIA.

ADJUSTING THE KERNEL LAUNCH PARAMETERS IN OPENMP

Useful when you know more about the loop bounds than the compiler

The compiler will choose a number of
teams and threads, for each kernel, for
you, but you can change it with
clauses.

Our reductions may use atomic
operations, and you might find limiting
the number of teams gives better
performance.

num_teams(N) - Generate N teams for
this target region

thread_limit(Q) - Generate only Q
threads per team

int b[10][32];

pragma omp target teams loop thread 1limit(32) \
num teams(N) map(tofrom: b)
for (1 = ©0; 1 < N; ++1)
pragma omp loop bind(parallel)
for (j = 0; j < 32; ++j)
b[1][]] = 1;

Minfo:
10, Generating "nvkernel main F1L10 1" GPU kernel
Generating NVIDIA GPU code
10, Loop parallelized across teams(N) /* blockIdx.x */
12, Loop parallelized across threads(32) /* threadIdx.x */

Slide 12

NVIDIA.

OPENMP COLLAPSE CLAUSE

The same as OpenACC

Collapse(n): Applies the associated directive to the following n tightly nested loops

Useful when loop extents are short, or there are more loops than levels (teams,
parallel) available

#pragma omp target teams #pragma omp target teams

#pragma omp loop collapse(2) #pragma omp loop

for (int i=0; i<N; i++) for (int 1j=0; 1ij<N*N; ij++)
for (int j=0; Jj<N; Jj++) 1 1

1] / N;
; " ,

NVIDIA.

CALLING USER ROUTINES IN DEVICE CODE

OpenACC is more explicit than OpenMP

I OpenACC | OpenMP
real function fs(a) real function fs(a)
fs =a + 1.0 fs = a + 1.0
end function end function

subroutine fv(a,j,n) subroutine fv(a,j,n)

real :: a(n,n)

real :: a(n,n
(n,n) doi=1, n

l$acc loop vector

doi=1, n a(i,j) = fs(a(i,j))

a(i,j) = fs(a(i,Jj)) enddo

enddo end subroutine

end subroutine

subroutine fg(a,n)
subroutine fg(a,n)

real :: a(n,n)
real :: a(n,n) do j =1, n
l$acc loop gang call fv(a,j,n)
do j =1, n enddo

call fv(a,j,n) end subroutine

enddo

end subroutine
NVFORTRAN-F-1196-OpenMP - Standalone 'omp parallel' in a 'declare target’

routine 1s not supported yet.

|
$acc parallel NVFORTRAN/x86-64 Linux 21.11-0: compilation aborted
call fg(a,n)

I$acc end parallel

REDUCTION CLAUSE
OpenACC borrowed heavily from OpenMP, which didn’t change

The reduction clause takes many values
and “reduces” them to a single value, such
as 1n a sum or maximum

Each thread calculates its part

Reductions can be over all teams in the
kernel, or within a team

The compiler will perform a final reduction
to produce a single result using the
specified operation

for(1 = 0; 1 < size; i++)
for(j = 93 j < size; j++)
for(k = 9; k < size; k++)

cli]{J] += al1][k] * b{k][J];

#pragma omp target teams loop

for(1 = 0; 1 < size; i++)
for(j = 9; j < size; j++)
double tmp = ;

#pragma omp loop reduction(+:tmp)
for(k = 0; k < size; k++)

tmp += a[i][k] * blk][[J];
clif[J] = tmp;

NVIDIA.

ATOMIC OPERATIONS

Also very similar between OpenACC and OpenMP

The atomic construct ensures that a
specific storage location is accessed
and/or updated atomically, preventing
simultaneous (and indeterminate) reading
and writing by threads.

The “atomic update” is most commonly
used.

Hackathons have shown the need for
double complex atomic updates, but for
most purposes it is okay to do the real and
imaginary parts separately.

l$omp target teams loop private(j)
do 1 =1, n
j = mod(f(i),m)
l$omp atomic update
r(j+1) = r(j+1) + s(i)
l$omp end atomic
enddo

NVIDIA.

“DESCRIPTIVE” OPENMP LOOP VS. “PRESCRIPTIVE” OPENMP

Why we encourage users to try the loop construct

OpenMP loop more-directly leverages years of OpenACC scheduling/kernel generation

We don’t allow many parallelism-limiting directives in OpenMP loop:

master, single, barrier, etc.
OpenMP API calls

We don’t need to insert our device-side OpenMP runtime support into the generated
kernels with OpenMP loop.

The CUDA toolchain can do a good job or removing or at least minimizing the overhead,
but we have not gained a lot of experience yet with complicated kernels.

Slide 17 NVIDIA.

DEFINING DATA REGIONS

All OpenMP data directives are very similar in form and function to OpenACC

The target data construct defines a region of code in which GPU arrays remain on the GPU
and are shared among all kernels in that region.

@ragma omp target data
{

.

~

#pragma omp target teams loop

#pragma omp target teams loop

/

Arrays used within the
data region will remain on

the GPU until the end of
the data region.

<A NVIDIA.

DATA CLAUSES

Again, similar to OpenACC, with some additions

map (tofrom: list) Allocates memory on GPU and copies data from host to GPU when
entering region and copies data to the host when exiting region.

map (to: list) Allocates memory on GPU and copies data from host to GPU when
entering region.

map (from: list) Allocates memory on GPU and copies data to the host when exiting
region.

map (alloc: list) Allocates memory on GPU but does not copy.

map (always, to: [ist) Allocates memory on the GPU if it is not there. Always
copy data from the host to the GPU.

map (always, from: [ist) Allocates memory on the GPU if it is not there. Always

copy data to the host when exiting region.

NVIDIA.

UNSTRUCTURED DATA DIRECTIVES

Basic Example

enter data: Defines the start of an unstructured data region
clauses: map(to: list), map(alloc: list)

exit data: Defines the end of an unstructured data region
clauses: map(from: list), map(delete: list), map(release: list)

#pragma omp target enter data map(to:a[@:N],b[0:N]) map(alloc:c[O:N])

#pragma omp target teams distribute parallel loop
for(int 1 = ©0; 1 < N; i++){

cli] = a[1] + b[1];
}

#pragma omp target exit data map(from: c[O:N]) map(delete: a,b)

<A NVIDIA.

OPENMP TARGET UPDATE DIRECTIVE

Update: Explicitly transfers data between the host and the device

Always updates, not a “present_or” operation

Useful when you want to update data in the middle of a data region
Clauses:

target update to(): copies from the host to the device

target update from(): copies data from the device to the host

#pragma omp target update from(x[0:count])
MPI Send(x,count,datatype,dest,tag,comm) ;

NVIDIA.

ARRAY SHAPING

When the compiler fails to properly determine the size of arrays

Sometimes the compiler cannot determine the size of array
Examine the -Minfo output!

Developers must specify sizes explicitly using data clauses and array “shape”

C
#pragma omp target data map(to:a[0:size]), map(from:b[s/4:3%s/4])
Numbers in brackets are starting-element : number-of-elements
Fortran

ISomp target data map(to:a(1:end)), map(from:b(s/4+1:3*s/4))
Numbers in parenthesis are starting-element : ending-element

NVIDIA.

SUMMARY: BASIC USE OF DATA DIRECTIVES IN OPENACC AND OPENMP

more similar than different

I OpenACC
l$acc data <clause> | Starts a structured data region

copy(list) Allocates memory on the GPU and copies data from
host to GPU when entering region and copies data to the host
when exiting region.

copyin(list) Allocates memory on the GPU and copies data from
host to GPU when entering region

copyout(list) Allocates memory on GPU and copies data to the
host when exiting region.

create(list) Allocates memory on GPU but does not copy.

l$acc enter data <clause> | Starts unstructured data region.
clause can be copyin or create

l$acc exit data <clause> ! Ends unstructured data region.
clause can be copyout or delete

l$acc update [host|self|device](list)

I OpenMP
l$omp target data<clause> | Starts a structured data region

map(tofrom:1list) Allocates memory on the GPU and copies data
from host to GPU when entering region and coplies data to the host
when exiting region.

map(to:1list) Allocates memory on the GPU and copies data from
host to GPU when entering region

map(from:1list) Allocates memory on GPU and copies data to the
host when exiting region.

map(alloc:1ist) Allocates memory on GPU but does not copy.

l$omp target enter data <clause> ! Starts unstructured data
region.

clause can be map(to:) or map(alloc:)

l$omp target exit data <clause> ! Ends unstructured data region.
clause can be map(from:) or map(delete:)

l$omp target update [to|from](list)

Slide 23

NVIDIA.

ASYNCHRONOUS BEHAVIOR, QUEUES, DEPENDENCIES, STREAMS

1-1 correspondence between OpenACC async numbers and streams. OpenMP is WIP.

I OpenACC ' OpenMP
l$acc data create(a, b, c) l$omp target enter data map(alloc:a,b,c)
ierr = cufftPlan2D(iplanl,n,m,CUFFT_C2C) ierr = cufftPlan2D(iplanl,n,m,CUFFT_C2C)
ierr = cufftSetStream(iplanl,acc_get cuda stream(10)) nstream = (omp_get_default_device(), .true.)

ierr = cufftSetStream(iplanl,nstream)

l$acc update device(a)
l$omp target update to(a)

l$acc host data use device(a,b,c)

ierr = ierr + cufftExecC2C(iplanl,a,b,CUFFT_FORWARD)

ierr = ierr + cufftExecC2C(iplanl,b,c,CUFFT_INVERSE)

I$acc end host data

l$omp target data use device ptr(a,b,c)

ierr = ierr + cufftExecC2C(iplanl,a,b,CUFFT_FORWARD)
ierr = ierr + cufftExecC2C(iplanl,b,c,CUFFT_INVERSE)
l$omp end target data

I scale c | scale c
I$acc kernels I$omp target teams distribute
c =c / (m*n) do j =1, n
l$acc end kernels l$omp parallel do
do 1 =1, m
l$acc update host(c) c(i,j) = c(i,3J) / (m*n)
end do
end do

I Check i1nverse answer

|
write(*,*) 'Max error C2C INV: ', maxval(abs(a-c)) '$omp target update from(c)

I$acc end data
$ l$omp target exit data map(delete:a,b,c)

PASSING DEVICE POINTERS TO CUDA LIBRARIES IN OPENACC AND OPENMP

Getting the compiler to pass the device pointer within a data region

I OpenACC | OpenMP

use curand use curand

integer, parameter :: N=10000000, HN=10000 integer, parameter :: N=10000000, HN=10000

integer :: a(N), h(HN), i integer :: a(N), h(HN), 1
type(curandGenerator) :: g type(curandGenerator) :: g

istat = curandCreateGenerator(g, CURAND RNG_ PSEUDO XORWOW) istat = curandCreateGenerator(g,CURAND_RNG_PSEUDO_XORWOW)

| .
l$acc data create(a) l$omp target data map(alloc:a)

Slide 25 NVIDIA.

I OpenACC
use curand

integer, parameter ::

integer

type(curandGenerator) :: g

istat

l$acc

l$acc

istat

l$acc

l$acc

l$acc

l$acc

l$acc

= curandCreateGenerator(g,CURAND RNG_PSEUDO_XORWOW)

data create(a) copyout(h)

host data use device(a)

= curandGenerate(g, a, N)

end host data

kernels

end kernels

kernels

end kernels

N=10000000, HN=10000
:: a(N), h(HN), 1

FORTRAN ARRAY SYNTAX IN DEVICE CODE

Currently not available in our OpenMP compiler, would require support for workshare in target regions

' OpenMP

use curand

integer, parameter :: N=10000000, HN=10000
integer :: a(N), h(HN), i
type(curandGenerator) :: g

istat = curandCreateGenerator(g,CURAND RNG PSEUDO XORWOW)

l$omp target data map(alloc:a) map(from:h)

l$omp target data use device ptr(a)
istat = curandGenerate(g, a, N)

l$omp end target data

l$omp target teams loop
do idum=1,1

a = mod(abs(a),HN) + 1
end do

l$omp target teams loop
1, size(h)

do idum
h(i) = ©

end do

Slide 26

NVIDIA.

NVIDIA HPC SDK OPENMP WORK IN PROGRESS

Things we are working on for our 22.2 release

Array reductions (in both OpenMP and OpenACC)
Target/task/nowait (and how that maps to CUDA streams)

Support for Orphaned Parallel (A parallel loop in a user function called from a kernel)

Metadirectives

Performance, performance, performance

Slide 27 NVIDIA.

